
1/10/06 Blackhat Federal 2006 1

How to Sandbox IIS Automatically
without 0 False Positive and Negative

Professor Tzi-cker Chiueh

Computer Science Department

Stony Brook University

chiueh@cs.sunysb.edu

1/10/06 Blackhat Federal 2006 2

Big Picture
 Ways to get malicious code/data into victim sites

(1) Break cryptography

(2) Exploit design flaws in security protocols

(3) Leverage applications’ convenience features

(4) Exploit application-level implementation bugs

(5) Exploit language-level implementation bugs

(6) Non-technical attacks: insider, social engineering, etc.

 The majority of attacks are based on (3), (4) and (5)

1/10/06 Blackhat Federal 2006 3

Software Security

 Bugs in programs lead to vulnerabilities that
attackers exploit

 Design vs. Implementation bugs

 How to detect security-related bugs
 Static analysis

 Dynamic checking

 Intrusion detection/prevention

1/10/06 Blackhat Federal 2006 4

Control- Hijacking Attacks
 Network applications whose control gets hijacked because

of software bugs: Most worms, including MS Blast, exploit
such vulnerabilities

 Three-step recipe:
 Insert malicious code/data into the victim application

Sneaking weapons into a plane

 Trick the attacked application to transfer control to the inserted
code or some existing code

Taking over the victim plane

 Execute damaging system calls as the owner of the attacked
application process

Hit a target with the hijacked plane

1/10/06 Blackhat Federal 2006 5

Control-Hijacking Attack

 Three types of overflows:
 buffer overflow

 integer overflow

 input argument list overflow (format string attack)

 Consequences
 Code Injection

 Return-to-libc

 Data attack

1/10/06 Blackhat Federal 2006 6

Example: Stack Overflow Attack

 main() {

 input();

}

 input() {

 int i = 0;;

 int userID[5];

 while ((scanf(“%d”, &(userID[I]))) != EOF)

 i ++;

 }

STACK LAYOUT

FP  124 Return address of input() 100

 120 Local variable i

 116 userID[4]

 112 userID[3]

 108 userID[2] INT 80

 104 userID[1]

SP  100 userID[0]

1/10/06 Blackhat Federal 2006 7

Proposed Defenses

Stop the attack at either of the three steps:
 Overflowing some data structures

 Bounds checking compiler, e.g., CASH (world’s fastest array
bound checking compiler on Linux/X86 platform)

 Triggering control transfer

 Branch target check, e.g., FOOD (Foreign code detection on
Windows/X86 platform)

 Issuing damaging system calls

 System call pattern check, e.g., PAID

1/10/06 Blackhat Federal 2006 8

Program semantics-Aware Intrusion
Detection (PAID)

 As a last line of defense, prevent intruders from
causing damages even when they successfully take
control of a target victim application

 Key observation: Most damages can only be done
through system calls, including denial of service
attacks

 Idea: Prevent a hijacked application from issuing
system calls that deviate from its semantic model

1/10/06 Blackhat Federal 2006 9

System Call Model Checking

 Achilles Heel: How to derive a system call model for an
arbitrary application?
 Manual specification: error-prone, labor intensive, non-scalable

 Machine learning: error-prone, training efforts required

 PAID’s approach: Use compiler to extract the sites and
ordering of system calls from the source code of any given
application automatically
 Guarantees zero false positives and very-close-to-zero false

negatives

 System call policy is extracted automatically and accurately

1/10/06 Blackhat Federal 2006 10

PAID Architecture

ApplicationApplication

Compiler

System Call
 Graph

System Call
 Graph

Legitimacy
 Check

User

Kernel

Compile Time
Extraction Run Time Checking

1/10/06 Blackhat Federal 2006 11

System Call Flow Graph

 Take a program’s control flow graph, and
eliminate all nodes that are not related to system
calls

 Traverse the SCFG at run time to verify the
legitimacy of every incoming system call

 Non-determinism:
 If-then-else statements

 Function with multiple call sites

1/10/06 Blackhat Federal 2006 12

System Call Instance Coordinate

 Each system call instance is uniquely identified by
 The sequence of return addresses used in the function

call chain leading to the corresponding “int 80”
instruction

 The return address of the “int 80” instruction itself

 Example:

 Main F1 F2  F4  system_call_1 vs.

 Main F3 F5  F4  system_call_1

1/10/06 Blackhat Federal 2006 13

System Call Flow Graph Traversal

 Is there a path from the previous system call
instance (R1, R2, R3, … Rn) to the current system
call instance (S1, S2, S3, … Sm)?

 Largely deterministic  low latency

1/10/06 Blackhat Federal 2006 14

Dynamic Branch Targets

 Not all branch targets are known at compile time:
function pointers and indirect jumps

 Insert a notify system call to tell the kernel the
target address of these indirect branch instructions

 The kernel moves the current cursor of the system
call graph to the designated target accordingly

 Notify system call is itself protected

1/10/06 Blackhat Federal 2006 15

Asynchronous Control Transfer

 Setjmp/Longjmp
 At the time of setjmp(), store the current cursor

 At the time of longjmp(), restore the current cursor

 Signal handler
 When signal is delivered, store the current cursor

 After signal handler is done, restore the current cursor

 Dynamically linked library such as dlopen()
 Load the library’s system call graph at run time

1/10/06 Blackhat Federal 2006 16

Mimicry Attack

 Hijack the control of a victim application by over-
writing some control-sensitive data structure, such
as return address

 Issue a legitimate sequence of system calls after
the hijack point to fool the IDS until reaching a
desired system call, e.g., exec()

 None of existing commercial host-based IDS can
handle mimicry attacks

1/10/06 Blackhat Federal 2006 17

Mimicry Attack Example

 Legitimate sequence:
open()  read()  receive()  send() 
exec()

 Buffer overflow vulnerability exists between
open() and read()
 Hijack the program’s control between open() and read()
 Execute read()  receive()  send()  exec()

1/10/06 Blackhat Federal 2006 18

Mimicry Attack Details
 To mount a mimicry attack, attacker needs to

 Issue each intermediate system call without being
detected

 Nearly all system calls can be turned into no-ops
 For example (void) getpid() or open(NULL,0)

 Grab the control back after each intermediate system call

 Set up the stack so that the injected code can take control after each
system call invocation

1/10/06 Blackhat Federal 2006 19

Countermeasures

 Minimize non-determinism in the system call
model
 If (a>1) { open(..)} else {open(..); write(..)}

 Checking system call argument values whenever
possible

 Random insertion of null system calls at load time
to defeat guessing
 Different SCFGs for different instances of the same

program

1/10/06 Blackhat Federal 2006 20

Impossible Path Example

Entry(main)

call(foo)

return(foo)

call(foo)

return(foo)

Exit()

Exit(main)

Entry(foo)

sys_foo

sys_foo

Exit(foo)

main()
{

foo(); % W
foo(); % X
exit(); % E

}

foo()
{

for(….){
sys_foo(); % Y

 sys_foo(); % Z
}

}

1

2
3

4

1/10/06 Blackhat Federal 2006 21

With PAID

 Legitimate Path:
WY  WZ  XY  XZ  E

 Impossible Path:
WY  WZ  E

1/10/06 Blackhat Federal 2006 22

PAID Checks
 Ordering

 Site: return address sequence

 Arguments

 Checking performed in the kernel with SCFG
stored in the user space

1/10/06 Blackhat Federal 2006 23

System Call Argument Check

 Start from each “file name” system call argument, e.g.,
open() and exec(), and compute a backward slice
towards the “inputs”

 Perform symbolic constant propagation through the
slice, and the result could be
 A constant: static constant
 A program segment that depends on initialization-time

inputs only: dynamic constant
 A program segment that depends on run-time inputs:

dynamic variables

1/10/06 Blackhat Federal 2006 24

Dynamic Variables

 Derive partial constraints, e.g., prefix or suffix,
“/home/httpd/html”

 Enforce the system call argument computation
path by inserting null system calls between where
dynamic inputs are entered and where the
corresponding system call arguments are used

1/10/06 Blackhat Federal 2006 25

Ordering Check Only
main

Buffer Overflow

setreuid read open stat write

setreuid

read

open

stat

write

function call

Compromised!

1/10/06 Blackhat Federal 2006 26

Ordering and Site Check
main

Buffer Overflow

setreuid read open stat write

function call

int 0x80 instruction

Compromised!

1/10/06 Blackhat Federal 2006 27

Ordering, Site and Stack Check (1)
main

Buffer Overflow

setreuid read open stat write

function call

int 0x80 instruction

1/10/06 Blackhat Federal 2006 28

Ordering, Site and Stack Check (2)

main

Buffer Overflow

exec

Stack check passes

function call

int 0x80 instruction

1/10/06 Blackhat Federal 2006 29

Random Insertion of Notify Calls
main

Buffer Overflow

exec

notify

notify

Attack
failed

function call

int 0x80 instruction

1/10/06 Blackhat Federal 2006 30

Window of Vulnerabilities

Buffer Overflow

Buffer Overflow

exec

execnotify

notify

Desired system call follows
Immediately

Argument
replacement

1/10/06 Blackhat Federal 2006 31

Prototype Implementation

 GCC 3.1 and Gnu ld 2.11.94, Red Hat Linux 7.2

 Compiles GLIBC successfully

 Compiles several production-mode network server
applications successfully, including Apache-1.3.20,
Qpopper-4.0, Sendmail-8.11.3, Wuftpd-2.6.0, etc.

1/10/06 Blackhat Federal 2006 32

Throughput Overhead

Apache

Qpopper

Sendmail

Wuftpd

PAID PAID/stack PAID/random PAID/stack
 random

4.89% 5.39% 6.48% 7.09%

5.38% 5.52% 6.03% 6.22%

6.81% 7.73% 9.36% 10.44%

2.23% 2.69% 3.60% 4.38%

1/10/06 Blackhat Federal 2006 33

However

 PAID assumes source code availability, but most
users do not have access to the source code of
their applications, especially on the Windows
platform

 What is the SCFG for Microsoft’s IIS?

 Enters the BIRD (Binary Interpretation using Run-
time Disassembly) project

 Binary PAID = BIRD + PAID

1/10/06 Blackhat Federal 2006 34

Motivation

 Many state-of-the-art solutions to software
security problem are based on program
transformation techniques

 Achilles Heel: cannot be applied to existing
executable binaries, especially for Windows PE32
binaries

 From source code to binary code:
 Static disassembly does not always work
 Binary instrumentation is non-trivial

1/10/06 Blackhat Federal 2006 35

Static Disassembly

 No guarantee for 100% recovery: no way to know for sure

 Distinguishing between instruction and data is
fundamentally undecidable

 Linear sweeping: data (e.g., jump table) could be
embedded code section

 Recursive traversal: some functions do not any explicit call
sites in the binary

 Windows DLLs are full of hand-crafted code sequences
designed to defeat reverse engineering tools

 Bottom line: about 90% coverage with absolute confidence

1/10/06 Blackhat Federal 2006 36

BIRD

 A binary analysis and instrumentation
infrastructure on the Windows platform
 Do as much static disassembly as possible

 Uncover “statically unknown” instructions through
dynamic invocation of disassembler

 Provide an API for developers to add application-
specific analysis and/or instrumentation routines

 Guarantee 100% disassembly accuracy and coverage

1/10/06 Blackhat Federal 2006 37

Architecture

1/10/06 Blackhat Federal 2006 38

Dynamic Disassembly

 Statically redirect all indirect jumps/calls to a check()
routine

 Redirect delivery of exception handlers to the check()
routine also

 In the check() routine
 Check if the target address is known or not
 If known, jump to the target; else invoke the dynamic

disassembler to disassembly the target area and jump
 Update the unknown-area list and modify indirect

jumps/calls in dynamically disassembled instructions

1/10/06 Blackhat Federal 2006 39

Binary Instrumentation

 Need to find enough bytes in a given
instrumentation point to put in a 5-byte jump
instruction

 Can use neighboring instructions only if they are
not targets of other direct jump instructions in the
same function

 Use INT 3 as a fall-back mechanism, which goes
through an exception handler to invoke check()

1/10/06 Blackhat Federal 2006 40

Performance Penalty

 Works for all programs in MS Office suite and IE

 Latency overhead

0.8%3.5%Show object headers in an EXE fileobjdump

16.7%19.0%Find a string in a 500KB filefind

2.4%6.4%List all strings in a binary filestrings

0.15%10.0%Compare two similar5MB filescomp

0.18%3.4%Encrypt a 10MB filegzip

ModifiedOriginalDescriptionProgram

1/10/06 Blackhat Federal 2006 41

Binary PAID

1/10/06 Blackhat Federal 2006 42

Throughput Overhead

1/10/06 Blackhat Federal 2006 43

Other Application: FOOD

 Goal: Ensure no dynamically injected code can run by
monitoring target addresses of all indirect branches

 Assumption: no self modifying code, thus read-only text
segment

 Approach: check the legitimacy of each instruction based
on its location rather than its content

 Intercept at all indirect jumps/calls, return instructions and
invocation of exception handlers

 Overhead: 10-25%

1/10/06 Blackhat Federal 2006 44

Conclusion
 PAID is the most efficient, comprehensive and accurate

host-based intrusion prevention (HIPS) system on both
Linux and Windows platform

 Automatically generates per-application system call policy
 Guarantee 0 false positive and almost 0 false negative
 Effective countermeasures against mimicry attacks,

 Extensive system call argument checks
 Load-time insertion of random null system calls
 Return address sequence check

 Can handle function pointers, asynchronous control
transfer, threads, exceptions, and DLL

1/10/06 Blackhat Federal 2006 45

Future Work

 Further reduce the latency/throughput overhead of
Binary PAID

 Reduce the percentage of “dynamic variable”
category of system call arguments

 Apply it to generate security policy for SELinux
automatically

 Create a counterpart of PAID for NIDS

1/10/06 Blackhat Federal 2006 46

For more information

Project Page: http://www.ecsl.cs.sunysb.edu/PAID

Thank You!

